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Abstract. The dynamic structure factor of neutron quasi-elastic scattering has been calculated
by Monte Carlo methods for atoms diffusing on a disordered lattice. The disorder includes
not only variation in the distances between neighbouring atomic sites but also variation in the
hopping rate associated with each site. The presence of the disorder, particularly the hopping rate
disorder, causes changes in the time-dependent intermediate scattering function which translate into
a significant increase in the intensity in the wings of the quasi-elastic spectrum as compared with
the Lorentzian form. The effect is particularly marked at high values of the momentum transfer
and at site occupancies of the order of unity. The MC calculations demonstrate how the degree
of disorder may be derived from experimental measurements of the quasi-elastic scattering. The
model structure factors are compared with the experimental quasi-elastic spectrum of an amorphous
metal–hydrogen alloy.

1. Introduction

The rapid diffusion of hydrogen atoms occupying interstitial lattice sites in metals can be
studied by nuclear magnetic relaxation (nmr) and neutron quasi-elastic scattering (nqs). In
disordered examples of these alloys the individual sites occupied by the hydrogen atoms may
have very different structural and chemical environments, which result in a distribution of
binding energies and a distribution of jump rates. In two earlier papers we demonstrated the
effect of this disorder on nuclear magnetic relaxation [1, 2] by means of Monte Carlo (MC)
calculations and showed that it was possible to obtain a measure of the jump rate distribution
from the frequency dependence of the relaxation rate. To a large extent such a result is possible
because the time scale of a relaxation experiment is of the order of the average interval between
diffusion jumps τ . In quasi-elastic scattering, in which the dynamic structure factor S(q, ω)
is measured, this time scale, as determined by the decay of the correlation functions, depends
on the momentum transfer q and is of the order of τ when q > π/a, where a is the average
diffusion jump length. The energy spectrum of S(q, ω) is the equivalent in neutron scattering
of the frequency dependence of the relaxation rate and it follows that this spectrum, at least
at large q, is also likely to be modified by the presence of disorder. Measuring it can provide
a means of establishing the degree of disorder and with this in mind, we have adapted our
MC model to the scattering problem in order to explore the relation between S(q, ω) and the
distribution of jump rates. Some of the results of these calculations are reported in this paper.

Experiments on neutron quasi-elastic scattering in amorphous metal–hydrogen alloys,
in which the jump rate disorder is likely to be considerable, are just within the compass of
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backscattering spectrometers. The experimental difficulties arise principally from the restricted
temperature range over which these alloys remain stable. Above 600 K many amorphous
metal–hydrogen alloys crystallize and lose hydrogen, so that most measurements of the quasi-
elastic scattering have been made below 550 K. In a typical alloy at 500 K the diffusion jump
rate is ∼109 s−1. In ordered materials this jump rate corresponds to a spectral half-width at
large q of 0.6 µeV and it is fairly straightforward to measure near Lorentzian spectra with this
half-width on high resolution backscattering spectrometers. In disordered metal–hydrogen
alloys, on the other hand, the half-width at large q is generally much less than this [3, 4] and
the spectrum also departs quite markedly from the Lorentzian form, particularly in the high
energy wings of the spectrum [3, 5].

Consequently, experimental data of high statistical accuracy are required to establish the
true shape of the spectrum, if the degree of disorder is to be obtained. This is usually possible
for q > π/a, where the spectrum is also essentially independent of q but it is generally more
difficult at small momentum transfers where the resolution is often lower. For q < π/a the
spectrum narrows, takes on a q2 dependence and is, in any case, less susceptible to the disorder.
The present calculations are therefore especially directed towards the scattering at high q and
at high hydrogen concentration, where, it will be seen below, disorder has the greatest effect.
In contrast, earlier MC calculations have explored either diffusion [6] or the nqs in particular
hydrogen systems at low concentration [7].

Hydrogen has a large incoherent scattering cross section for thermal neutrons and the quasi-
elastic scattering therefore depends on the diffusive motion of individual hydrogen atoms. In
the van Hove [8, 9] formulation the incoherent differential scattering cross-section of a single
isotope is proportional to the scattering function,

Sinc(q, ω) = (1/2π)
∫

I (q, t) exp(−iωt) dt (1)

where

Iinc(q, t) = 〈exp{iq · si (t)} exp{−iq · si (0)}〉. (2)

As given here in the classical approximation, which is applicable to the diffusion time scales
indicated above, the intermediate scattering function Iinc(q, t) depends only on the position
vectors si (t) of the hydrogen atoms [9]. In fact Iinc(q, t) is the Fourier transform of the self
part of the van Hove correlation function,

G(s, t) = 〈δ(s + si (0) − si (t))〉 (3)

which expresses the probability that an atom will be at the position s at time t given that it was at
the origin at t = 0. The actual form ofG(s, t) is not required here since the evolution with time
of the classical intermediate function can easily be calculated by Monte Carlo methods and the
corresponding scattering function obtained by Fourier transform. The effect of the disorder on
either function at any value of q can be established in a form that can be compared directly with
experimental data. In addition the intermediate scattering function is the counterpart of the
spin correlation function in the perturbation approximation of the dipolar relaxation rate [8, 1]
but with the difference that the scattering depends on the relative positions of single atoms
rather than the spin pairs involved in the dipolar coupling. Consequently, the Monte Carlo
calculation is somewhat simpler for the intermediate function than for the spin correlation
function and it is also possible to make a direct comparison between the two at appropriate
values of the momentum transfer.
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2. The Monte Carlo simulation

Only a broad outline of the Monte Carlo model used for these calculations is given here. The
details can be found in [1, 2]. In order to simulate diffusion in the metal–hydrogen alloy the
hydrogen atoms were allowed to hop on a network of sites and the amorphous nature of the alloy
was introduced by creating both structural and energy disorder in the network. The disordered
network was derived from a simple cubic lattice by displacing the sites in random directions
with limitations on the magnitude of the displacements to prevent the overlap of neighbouring
sites. In order to jump to a neighbouring site the atoms have to overcome an energy barrier.
In general it can be regarded as being made up of two parts, the site energy required to escape
the binding force at the site and the saddle point energy, the barrier between neighbouring sites
[7, 10]. As in our previous work [1] the energy disorder was comprised solely of a random
variation in the site energy while the saddle point energy was taken to be the same at all sites
and in all directions. The restriction to site energy was occasioned by qualitative differences
in site and saddle point disorder [2]. At low atom/site ratios the atoms almost always have a
choice of diffusion paths and tend to take those with the lowest barriers, reducing the effect
of the saddle point disorder. On the other hand, at high hydrogen concentrations the diffusion
paths are limited by site blocking and at any instant a particular spin is likely to have only one
jump direction available to it with the result that the full effect of saddle point disorder will
then be felt. We have chosen site disorder in order to give a clear demonstration, without this
added complication, of the way in which the scattering functions depend on concentration.

Site energy distributions in amorphous metal–hydrogen alloys are not well understood and
are often represented by error functions. A simplification which does not lead to any qualitative
differences in the results is to assume a uniform distribution between two limiting values of
the site energy, E = Ê ± δE/2. This simplification was adopted in the earlier papers and
for the sake of comparison with the relaxation is also adopted here. The probability of a hop
is taken to have the usual Arrhenius temperature dependence with a constant pre-exponential
factor and this leads to a temperature dependent distribution of jump rates given by

ρ(ν) = kT /νδE = 1/nν̂ ln(r) (4)

where ν = nν̂ and ν̂ = ν0 exp(−Ê/kT ) is the hopping rate associated with the mean energy.
It is important to note that in this definition the extent of the distribution can be defined by the
ratio, r , of the maximum and minimum jump rates. In expression (4) ρ(ν) is normalized to
unity in the interval

r−1/2 < n < r1/2 with r = νmax/νmin = eδE/kT . (5)

Nuclear magnetic relaxation experiments are often conducted over a wide range of temperature
and the temperature dependence of r was an important feature of the earlier papers [1, 2].
It is less important for quasi-elastic scattering which can only be observed over a limited
temperature range in amorphous metal–hydrogen alloys and in the present case the Monte
Carlo calculations are made at set values of r without reference to the temperature dependence.

In order to simulate the diffusion a random number generator was used to create attempts
by the atoms to overcome the energy barrier and the average jump rate, ν̄(�=ν̂) was calculated
from the attempt frequency. The atoms were allowed to diffuse and the time dependence of the
intermediate function was calculated during the diffusion for a given site energy distribution.
As indicated in [1] the actual jump rates were multiplied by a factor to keep the efficiency of
the calculations approximately constant. This factor was chosen so that each data set consists
of about 3000–5000 points. For reasons of clarity only a small sample of the data is given in
the accompanying figures which are averages of about 30 calculations. In order to make the
Fourier transform to Sinc(q, ω) a sum of five decaying exponential functions was fitted to each
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data set [1]. The rms deviation of the MC data from the fitted curve is typically ∼10−3 with
the deviation in any point <10−2. It proved to be impossible to fit the intermediate function
with this accuracy by means of a two parameter stretched exponential decay, even though they
are both similar in form.

3. The intermediate scattering function and comparison with nmr

The time dependence of the intermediate scattering function Iinc(q, t), which by definition has
an initial value of unity, is shown in figures 1, 2 and 3 for q = 0.8 and three values of the
atom–site ratio c. In these figures time is given in units of τ̄ , where τ̄ = 1/ν̄ is the average
interval between hops and q is in units of π/a. It is possible to omit the vector property of
q because the hops of the atoms are in random directions due to the structural disorder. This
random nature taken in conjunction with equation (3) also implies that the time constant of
Iinc(q, t) is ∼τ̄ when r = 1 and q > π/a. The points are samples of data from the MC
calculation and the solid lines are the fitted sum of five exponential curves as indicated above.

The general features of Iinc(q, t) at q = 0.8 are as follows. When the width r of the jump
rate distribution is unity, the decay of Iinc(q, t) closely follows the exponential law predicted
by the Chudley–Elliott model of the scattering [11]. As r increases the overall decay constant

Figure 1. The time dependence of the intermediate scattering function Iinc(q, t) for q = 0.8 and
an atom–site ratio c = 0.1 and various values of the disorder parameter r . Time is given in units
of the average interval between diffusion jumps τ̄ and q is in units of π/a, where a is the average
jump distance. The data points are selected values from the Monte Carlo model and the solid lines
are obtained by fitting five decaying exponential functions to all the data from each calculation.



Neutron quasi-elastic scattering in disordered solids 2383

Figure 2. The time dependence of the intermediate scattering function Iinc(q, t) for q = 0.8 and
an atom–site ratio c = 0.5 plotted as in figure 1.

increases and so does the amplitude of the tail of the decay, with the result that Iinc(q, t) departs
significantly from the exponential form at large r . The fact that these features increase with
concentration reflects the change in the effective hopping rate distribution with composition.
Because of the exponential relation between the hopping rate and the binding energy in the
MC model, the diffusing atoms tend to occupy the deeper traps when the concentration is low.
The result is that, at any instant, the diffusing atoms do not occupy the full range of possible
hopping rates. On the other hand at high concentrations, all traps tend to be occupied and
the distribution of the diffusing atoms and the full range of hopping rates as given by r are
essentially the same. This aspect of the model has been dealt with in more detail by Monte
Carlo methods in [1].

It is not our intention to discuss the deviation from exponential at length, since comparison
with experiment is normally made through Sinc(q, ω). The analogous departure of Sinc(q, ω)
from the Lorentzian form is described in the next section (see figure 6). Instead we consider
the relationship of Iinc(q, t) to the spin correlation functions which determine the nuclear
magnetic relaxation and to aid comparison, figures 1–3 have been plotted in the same manner
as the spin correlation functions of [1] and [2]. It is reasonable to compare Iinc(q, t) at large
q with the spin functions, since in both cases the atomic correlation decays in the interval of
one diffusion hop. The spin correlation functions depend on the short range dipolar coupling
between pairs of spins. Given that the motion of either spin of a pair causes them to become
uncorrelated, the time constant of the spin correlation function is expected to be about half that
of Iinc(q, t), which depends on the positions of individual atoms rather than pairs. According
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Figure 3. The time dependence of the intermediate scattering function Iinc(q, t) for q = 0.8 and
an atom-site ratio c = 0.8 plotted as in figure 1.

to the MC calculations the time constant of Iinc(q, t) at r = 1 and q = 0.8 increases from
∼1.2τ̄ to ∼1.7τ̄ as c increases from 0.1 to 0.8. However, whatever the value of c, it is always
∼1.5 times the time constant of the equivalent spin dipolar correlation function. Changes with
concentration of this magnitude in the spin dipolar correlation function have been identified
with the increased probability of an atom retracing the path of its preceding jump [1] and such
an atom–vacancy correlation is presumably the source of the change in the time constant of
Iinc(q, t). Atom–vacancy correlation is known to cause small departures from true exponential
decay in the correlation functions. This is observed in Iinc(q, t) at r = 1 but is much less
significant than the deviation found at high values of r .

The ratio of the nqs to the nmr time constant is found to increase as r increases. As an
example, the spin correlation function for r = 100 and c = 0.8 is compared with the equivalent
Iinc(q, t) at q = 0.8 in figure 4. The time dependence of the two curves can be made the same,
if time for the spin correlation function is scaled by a factor of 2.4. This increase is due to
the nature of the MC model in which the binding energies are randomly distributed over the
atomic sites. It is therefore possible for a spin with a high probability of making a hop to be
the immediate neighbour of a spin with a low probability. The decay in the correlation of such
spin pairs depends on the average of the two jump rates so that the full effect of the jump rate
distribution is not felt by the spin pairs as it is in the case of the motion of individual atoms which
contributes to Iinc(q, t). This observation raises the possibility that this difference between
the nmr and nqs correlation functions may provide a means of detecting spatial correlation in
the distribution of binding energies.
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Figure 4. The spin correlation function of [1] (nmr) for r = 100 and c = 0.8 is compared with the
equivalent Iinc(q, t) (nqs) at q = 0.8. Both functions are plotted as in figure 1. The two curves
can be made to coincide if time for the spin correlation function is scaled by a factor of 2.4. The
scaling factor is indicative of the fact that Iinc(q, t) depends on the motion of single atoms whereas
the spin function involves pairs. Also shown is Iinc(q, t) calculated from equation (6) for c ∼ 1
and r = 100. Time for this function has been scaled by a factor of 1.9 to bring it into approximate
coincidence with the MC nqs results for c = 0.8.

The MC results indicate a possible alternative method of calculating Iinc(q, t) at least
for large q. Since the scattering function depends on the motion of individual atoms and,
at large q, the atomic correlation decays after one hop, each hop may be considered to be
independent. Thus a reasonable proposition is that Iinc(q, t) might be obtained by assuming
that the correlation functions of the individual atoms are exponential with rate constants equal
to the jump rate ν and integrating over the distribution of jump rates. As mentioned above and
explained in [1] this distribution is not necessarily the distribution of jump rates associated
with the site energies, that is ρ(ν) of equation (4), since it also depends on the occupancy of the
sites. Only in the extreme of c → 1 when all the sites are occupied does it become identical
with ρ(ν) [1]. Under these circumstances Iinc(q, t) would have the form

Iinc(q, t) =
∫

ρ(ν) exp(−νt) dν. (6)

The only other case for which a simple form for this distribution can be obtained is of course in
the limit c → 0 [1]. At other concentrations it must be obtained from the MC calculation itself
and consequently equation (6) is of little general use in fitting curves to the MC results even
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though it appears superficially to be superior to the five exponential fit mentioned in section 2.
It perhaps should be pointed out that the time constants of the five exponential decays are not
intended to bear any relation to ρ(ν) of equation (6) but are simply free parameters in the
fitting procedure.

The assumption of independent hops is more applicable to the limit c → 0 but the use of
equation (6) would not then give ρ(ν) directly. We have sought to test whether equation (6)
is likely to be applicable at c = 1 by comparing calculations based on it with the MC results.
They give Iinc(q, t) curves which are similar in shape to those of figures 3 and 4, that is for
c = 0.8, but only if their time dependence is scaled by a factor which depends on r and is
of the order of 2. An example is shown in figure 4. Exact correspondence with the shape
of the MC result for c = 0.8 is not expected and in fact, Iinc(q, t) from equation (6) has a
greater amplitude in the tail of the decay reflecting the greater effective jump rate distribution
corresponding to c ∼ 1. It therefore appears that equation (6) may be of some use in calculating
the general form of Iinc(q, t) or obtaining ρ(ν) from experimental data for c ∼ 1 but it cannot
give the true diffusion rate. We ascribe the scaling factor to the effect of multiple hopping
during the decay of the scattering function. In the MC simulation the initial part of the decay
tends to take place through the movement of those atoms with the greater probability of making
a hop. They may make further hops in the average time required for a single hop of an atom
with a low probability of hopping. Such hops help to determine the average hopping rate ν̄

without adding to the diminution of Iinc(q, t). On the reduced time scales of figures 1–3, they
contribute to an increase in the time constant of the decay and are almost certainly the origin
of the scaling factor required to bring the Iinc(q, t) of equation (6) into coincidence with the
MC calculations.

4. The dynamic structure factor

The determination of the jump rate distribution r from experimental data will normally
involve the dynamic structure factor rather than the intermediate scattering function, since
the former is more readily derived from measurements of the scattering. As an example of the
dynamic structure factors obtained from the MC model, Sinc(q, ω) calculated from the sum
of exponential functions which fits the intermediate scattering function is shown in figure 5
for c = 0.1 and q = 0.8. The reduction in the spectral width corresponds to the increase
in the average time constant of the curves in figure 1 and it may be possible to use this
reduction to find r , if an absolute Sinc(q, ω) can be obtained from experiment. However, a
more straightforward approach based on the departure of Iinc(q, t) from exponential seems
preferable. The equivalent departure of Sinc(q, ω) from the Lorentzian form is illustrated in
figure 6 for c = 0.8 and q = 0.8. In this figure the Sinc(q, ω) have been normalized to unity
at ωτ̄ = 0 and the time dependence has been scaled so that they all have the same half-width.
Sinc(q, ω) for r = 1 can be seen to depart by about 10% between ωτ̄ = 2 and ωτ̄ = 3 from the
Lorentzian spectrum of the same half-width, which is also shown in the figure. As r increases
the high energy wings of the spectrum gain significantly in intensity. Consequently, it should
be possible to find r by fitting the MC results to measured structure factors, given that there is
an appropriately low level of statistical fluctuation in the experimental data.

The form of Sinc(q, ω) at q = 0.8 has been chosen to illustrate the MC results because at
this value of q there is a turning point in the behaviour of the structure factor. This is illustrated
in figure 7 where the spectral half-width for c = 0.5 is plotted as a function of q. Above
q = 0.8, Sinc(q, ω) is found to be almost independent of q, especially for large r , a feature
which reflects the random nature at large q of the phases in the oscillatory terms in equation (2).
On the other hand, many hops of the atoms take place during the decay of the correlation at
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Figure 5. The dynamic structure factor Sinc(q, ω) calculated by Fourier transform from the
exponential functions which fit Iinc(q, t) for c = 0.1 and q = 0.8. The reduction in the spectral
width corresponds to the change in the average time constant of the curves in figure 1 caused by
increasing the disorder parameter r .

small values of q so that below q = 0.8, the half-width of Sinc(q, ω) decreases. In addition, a
large fraction of the distribution of jump rates is sampled with the result that, as q decreases
below 0.8, Sinc(q, ω) becomes progressively more Lorentzian. In fact at q = 0.1, Sinc(q, ω)
is indistinguishable from the Lorentzian form.

The extent to which the MC results are comparable with theory is also illustrated in
figure 7, where the solid line is the half-width of the dynamic structure factor calculated from
the Chudley–Elliott model [11]. According to this model

Sinc(q, ω) ∝ f (q)/(f 2q) + ω2) (7)

and if the diffusion hops of length l are in random directions, the half-width f (q) in units of
τ̄ is given by

f (q) =
∫

[1 − sin(ql)/(ql)]γ (l) dl∫
γ (l) dl

(8)

where the disorder is taken into account by giving l a distribution γ (l). Equation (8) and
γ (l) can be evaluated for the distribution of jump lengths implicit in our present model. The
resultant f (q), the solid line in the figure, has the limiting behaviour of f (q) ∝ q2 at small
q and f (q) = 1 at large q. The Chudley–Elliott half-width is directly comparable with the
half-width for r = 1 calculated from the full MC model. The principal difference between
them is that the atom–vacancy correlations mentioned in the previous section are not part of
the Chudley–Elliott model as given by equations (7) and (8) but are included in the MC model.
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Figure 6. Sinc(q, ω) plotted in a manner which illustrates the effect of disorder on the wings of
the spectrum. The Sinc(q, ω) have been normalized to unity at ωτ̄ = 0 and the time dependence
has been scaled so that they all have the same half-width. A Lorentzian spectrum of the same
half-width is also shown in the figure. As the disorder parameter r increases the high energy wings
of the spectrum gain significantly in intensity. The figure has been drawn with the scale on the
abscissa true for r = 1.

The effect is to reduce the half-width of the MC model with respect to the Chudley–Elliott
version by 20–30% for q equal to 0.8 or less. This result is consistent with the time constants
quoted in the previous section. At high values of q there is a difference of a factor ∼2, which
must arise partly for the same reason but is also presumably enhanced by the departure of the
MC from the Lorentzian form implicit in the Chudley–Elliott theory.

5. Comparison with experiment

The MC calculations have shown that the best chance of estimating r from experiment is to
measure the dynamic structure factor at a sufficiently high q, if possible in a region where
it is independent of q. An example of such data, for hydrogen absorbed in the metallic
glass Ni35Ti65, has been published by Crouch et al [3]. In this experiment Sinc(q, ω) was
measured at q = 0.60, 0.83, 1.20 and 1.48 Å−1 and the results are such that the spectra at
the latter two values are the same within experimental error. Slight narrowing can be detected
at q = 0.83 Å−1 with further reduction at 0.60 Å−1. We therefore conclude that the knee in
the half-width as given in figure 7 occurs near q = 0.83 Å−1 and q = 1.48 Å−1 lies in the
region where the half-width is independent of q. Sinc(q, ω) at q = 1.48 Å−1 as measured
on the IN10 backscattering spectrometer at the ILL, Grenoble is shown by the data points in
figure 8. Here Sinc(q, ω), which includes the spectral broadening caused by the instrumental
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Figure 7. The half-width at half maximum, !, of Sinc(q, ω) for c = 0.5 is plotted as a function of
q. Above q = 0.8, Sinc(q, ω) is found to be almost independent of q, especially for large values
of the disorder parameter r . Below q = 0.8, Sinc(q, ω) becomes progressively more Lorentzian
while its half-width decreases and becomes proportional to q2. The solid line is the half-width
calculated from the Chudley–Elliott model [11]. It is compared with the half-width for r = 1 in
the text.

resolution, has been normalized to unity at its peak and plotted on a logarithmic scale. As
pointed out in sections 3 and 4 the principal effect of a distribution of jump rates at high q is
to add extra intensity to the high energy wings of the spectrum. Consequently, the logarithmic
scale has been chosen to enhance the wings with respect to the central portion and demonstrate
as clearly as possible the departure of the spectrum from the Lorentzian form.

In order to show that the MC model can result in a similar structure factor we have
calculated Sinc(q, ω) for c = 0.9, r = 240 and q = 1.8 in computer units. The aim was not to
fit the experimental data precisely but to provide a comparable spectrum. The value of q was
chosen to be in the region where the structure factor is independent of q. It was more difficult
to decide on the correct value to place on c, since the ratio of occupied to available hydrogen
sites is not known for metallic glass alloys. The experimental sample contained 1.5 hydrogen
atoms per metal atom and was apparently near saturation with hydrogen gas. Consequently,
the best estimate appears to be that c ∼ 1. Finally, in order to compare the calculated Sinc(q, ω)
with experiment, it is necessary to convolute the calculated spectrum with the instrumental
resolution, which in the experiment was obtained from the elastic spectrum of vanadium. The
convolution is displayed as the solid line near the experimental data points in figure 8. We have
not adopted any smoothing procedure but have simply convoluted with the actual experimental
data from the vanadium spectrum and this, of course, leads to short term fluctuations in the
calculated Sinc(q, ω). In order to show that the hydrogen spectrum is very different from the
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Figure 8. Comparison between the MC model and experiment. The data points are Sinc(q, h̄ω) as
measured by Crouch et al [3], normalized to unity at the elastic peak and plotted on a logarithmic
scale to emphasize the wings of the spectrum. The experimental spectrum includes the effects of
the instrumental resolution. The solid line near the data points has been calculated by convoluting
the structure factor for r = 240 and c = 0.9 from the MC model with the instrumental resolution
obtained from the elastic spectrum of vanadium. The vanadium data have not been smoothed and
this gives rise to oscillations in the solid line. The other solid line is a convoluted spectrum with
the same half-width for r = 1.

Lorentzian form we have also convoluted a near Lorentzian function (Sinc(q, ω) with r = 1)
with the vanadium spectrum. The function was chosen to give the same half-width at half-peak
as the MC model. The very much lower intensity in the wings of this spectrum is apparent.

In making the above comparison it is necessary to assume a value for the average hopping
rate ν̄. This was chosen to be 4.5 × 109 s−1. It is about an order of magnitude greater than
the value quoted by Crouch et al [3] which was obtained from a simple interpretation (r = 1)
of the nuclear magnetic spin relaxation. The difference arises because of the relatively slow
decay of the correlation functions when r is very different from unity. As shown above the
spin correlation functions and the intermediate scattering functions are related and this implies
that the earlier nmr result should be re-interpreted in the light of the present calculations. Our
earlier paper [1] shows that according to the MC model the often quoted criterion that the
hopping rate is of the order of the Larmor frequency when the relaxation rate is a maximum
no longer holds. When r ∼ 200 the position of the maximum is shifted in frequency by an
order of magnitude, thus bringing the hopping rate derived from the relaxation into agreement
with the neutron scattering result given above.
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6. Summary

MC calculations show that a distribution of diffusion jump rates leads to a dynamic structure
factor for neutron quasi-elastic scattering which is very different from Lorentzian. The
departure from Lorentzian is most readily characterized by excess intensity in the wings of
the energy spectrum and this is known to be a feature of the nqs from hydrogen absorbed in
disordered metal alloys. Comparison between calculated and experimental scattering supports
the view that the diffusion of hydrogen in such alloys involves such a distribution of jump
rates. It also shows that accurate measurement of the intensity in the wings of the spectrum is
essential if the true extent of the distribution is to be ascertained and consequently, a comparison
between the MC calculation and new experimental data of greater accuracy will be made in a
future paper.
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